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Welch’s, a major food manufacturer, must schedule
its own and its co-packer’s production lines. The sched-
uling process uses a 13-week rolling time horizon with
weekly time buckets and schedules that are updated
weekly. Each single stage finite capacity production
line serves a dedicated group of products with se-
quence-dependent setup times and costs. In addition,
safety stocks must be maintained to meet customer
service requirements in the face of highly variable de-
mand. Good low-cost schedules are difficult and time
consuming to create “by hand,” and optimal solutions
are not possible using math programming methods
except for very small problems.

In this article we describe a finite capacity planning
system developed at Welch’s that provides economi-
cal lot sizes by period and then sequences those lots
within each period. The system is based on simple,
intuitively appealing rules that do not require special-
ized knowledge of math programming or software.
The production plans the system provides are not “op-
timal,” but we will demonstrate that the costs are com-
petitive with more sophisticated methods and provide
substantial improvement over random schedules.

The system was developed by the Center for Pro-
cess Manufacturing, a partnership of APICS and Penn
State-Erie, with Welch’s as a sponsoring member. The
center is dedicated to helping decision makers in the
process industry. Our goal, therefore, is to describe
the scheduling system in sufficient detail so that oth-
ers may adapt it to their own needs. Welch’s imple-
mented the scheduling procedure using an Excel
spreadsheet with data downloaded from minicom-
puter databases. This approach gives production
planners a powerful scheduling tool in the context of
a familiar and convenient user interface, the comput-
erized spreadsheet.

PRODUCTION PLANNING

AS A TWO-STEP PROCESS

Dilts and Ramsing [2] point out that the simultaneous
solution of the lot-sizing and sequencing problem is
“computationally prohibitive.” That is somewhat of
an understatement as each step, lot sizing and sequenc-
ing, is difficult to solve to optimality by itself for most
business situations. Furthermore, for the lot-sizing
problem with sequence independent setup times, you
“cannot expect to find a fast algorithm to tell whether
or not a feasible solution exists, let alone find an opti-
mal solution.” [5]. The sequencing problem for a given
set of lot sizes is a variation of the traveling salesman
problem (TSP), which requires a great deal of comput-
ing power to solve. When using the TSP approach for
sequencing, we must “visit” each type of product
scheduled for production within a time period, with-
out backtracking, and at minimum cost.

The conclusion is that our scheduling problem must
be addressed in two steps:

Step 1. Solve the lot-sizing problem using estimates
for sequence-independent setup times and
costs under conditions of finite capacity.

Step 2. Solve the sequencing problem using the true
sequence-dependent setup costs.

According to Dilts and Ramsing [2], “this technique,
while not guaranteeing an optimal solution, provides
an acceptable solution to the problem.”

Allen, et al. [1] show that the lot-sizing method used
at Welch’s created schedules with costs comparable to
those obtained when mixed integer programming
methods are used. We will now use data from one of
Welch’s product lines to demonstrate the sequencing
step occurring after production quantities have been



specified on a period-by-period basis. In a subsequent
section, we will demonstrate the robustness of the
method by generating and solving a variety of prob-
lems with the sequencing heuristic and then compare
these solutions to those obtained using exact methods.
It must be borne in mind that separate testing of the
two stages, with cost as the performance measure, does
not represent a test of the advantages of addressing
lot sizing and sequencing simultaneously.

DOING THE TWO-STEP

Step 1: Lot Sizing Using Modified Dixon-Silver

Welch’s uses the modified Dixon-Silver method
(MODS), as reported by Allen, et al. [1], to carry out
the lot-sizing process. MODS adapts the heuristic of
Dixon and Silver [3] for zero setup times, accounting
for sequence-independent setup times. The heuristic
recognizes the limitations of finite capacity.

Clearly, when utilizing MODS to do lot sizing with
sequence-dependent setup times, a critical factor will in-
volve choice of a “representative” sequence-independent
setup cost. [6] An example set of transition costs for a
Welch’s process is shown in table 1. Products are num-
bered 1 through 6, and transitions into or out of state 0
correspond to startups or shutdowns of the process.

Although table 1 shows transition costs, the issue
when determining the production sequence, it should
be pointed out that the transition time must be consid-
ered when specifying the size of the production lot.
Because time spent changing between products repre-
sents lost capacity, production targets must be lowered
to account for time the process spends in transition.

There are three common methods for accounting for
the transition times when setting the production goals.
The first uses the maximum transition time (“row maxi-
mum”) a product might encounter as the representative
setup time for each item. This approach guarantees suf-

ficient machine time to make all transitions and meet the
production quantities calculated with MODS. On the
other hand, if we choose the second method, which uses
the minimum transition time (“row minimum”) as the
representative setup time, it is likely that the production
quantities will be too large, not leaving enough time to
make the transitions. The row maximum approach is a
conservative procedure, guaranteeing a feasible produc-
tion schedule while introducing the possibility of having
production capacity unaccounted for. The  row minimum
is an optimistic approach; production quantities from
MODS can be too large, not leaving enough time to make
all the transitions between products. The third approach
is to provide the MODS routine with an average transi-
tion time. Based on our experience using Welch’s data,
we recommend using the row maximum value for rep-
resentative setup times under conditions of high-capac-
ity utilization. In situations of moderate to low levels of
capacity utilization, we have had good luck using row
averages as representative setup times.

Step 2: Sequencing

To illustrate the sequencing process, we will con-
sider a small example drawn from the Welch’s data: a
situation in which management has demand and in-
ventory data for six types of items to be produced dur-
ing four time periods. The output from Step 1, MODS,
gives us a set of requirements by item and period; this
is shown in table 2.

There are two common modes of operation at Welch’s;
therefore, two methods of sequencing are required:

Case 1: Each period begins and ends in the idle state,
which we designate as state 0.

Case 2: Continuous production; the process seldom,
if ever, returns to the idle state.

Case 1 is the most common situation encountered
at Welch’s and is the subject of this article. For Case 2

TABLE 1: Setup Cost Matrix

To State**

From State 0 1 2 3 4 5 6

0 (Process Idle) * 150 110 120 100 130 100
1 (White Grape) 150 * 90 100 100 150 100
2 (Fruit Harvest) 110 500 * 500 500 500 500
3 (Grape Juice) 100 200 70 * 100 200 100
4 (Grape Apple) 100 200 70 100 * 500 100
5 (Harvest Blend) 150 150 90 100 100 * 100
6 (Grape Raspberry) 100 200 70 100 100 200 *

**State numbers are used to simplify the discussion.



the sequencing rule must seek to find the least-cost
path over the entire planning horizon. This means that
testing simple sequencing rules against “optimal” se-
quences may not be possible for most problems en-
countered in practice.

We will frame our sequencing problem in terms of a
traveling salesman problem by defining a node as the
decision to produce a product in a time period. We can
use arrows (directed arcs) between nodes to represent
sequence paths. All production sequences in each period
must begin and end in state 0. Figure 1, which shows the
nodes that must be visited in each period, depicts an ar-
bitrary production sequence. Our goal, however, is to find
the lowest-cost set of arcs that visit each node once, and
only once, within a time period. We will observe the fol-
lowing while constructing sequences.

1. All schedules must begin and end in state 0, the idle
state.

2. All nodes (products scheduled to be produced
within a time period) must be visited before transi-
tion to the next time period.

3. Table 1 will now serve as a setup cost matrix.
A possible sequence might be: 0-1-4-6-0-2-3-4-5-0-1-

6-0-2-3-5-0, with a cost of $3,120. Using dynamic pro-
gramming, we can easily show that the optimal
solution is $1,720. The question is, can we find a simple
procedure that will improve on the high cost of the
arbitrary sequences shown above?

Gavett [4] examined three rules for solving the se-
quencing problem. We have tested his rules against
Welch’s production line data and found that nearest
neighbor with variable origin (NNVO) consistently
yielded the lowest cost sequences.

The NNVO algorithm uses nearest neighbor (NN)
as a basic building block, and we describe it first.

NN Algorithm:
Start at the beginning node.

Select among the reachable nodes with
the lowest setup cost.

Rename this node the beginning node.
Repeat until all nodes have been visited.

Using this rule we obtain a new sequence: 0-6-1-4-
0-2-5-3-4-0-6-1-0-2-5-3-0, at a cost of $2,680. This se-
quence is an improvement over our earlier schedule,
which cost $3,120, but is above the optimal value of
$1,720.

NNVO Algorithm:
Start at the beginning node.

For each node reachable from the begin-
ning node,

Compute the cost to complete the net-
work from that node using NN.

Add the cost of reaching that node
from the beginning node.

Save the cost of that sequence.
Choose among the reachable nodes with

the lowest cost.
Rename that node as the beginning node.
If only one node is reachable, rename that

node the beginning node.
Repeat until all nodes have been renamed.

This simple set of rules is much less myopic than
NN because it examines the remainder of the network
each time it selects a new beginning. Frequently the
advantage offered by using all information contained
in the cost matrix leads the NNVO algorithm to a lower
cost sequence than the NN rule.

FIGURE 1: Network representation of the
sequencing problem

TABLE 2: Production Requirements by Item
and Period

Period - t

Item #, I 1 2 3 4

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1



Next we demonstrate the use of NNVO sequencing
for our example problem shown in figure 1.

Sequencing with NNVO

Set t = 1
Beginning node: 0
Reachable nodes: 1, 4, 6

Node 1
NN sequence: 1-4-6-0
Cost = 300
Total cost = 150 + 300 = 450

Node 4
NN sequence: 4-6-1-0
Cost = 450
Total cost = 100 + 450 = 550

Node 6
NN sequence: 6-4-1-0
Cost = 450
Total cost = 100 + 450 = 550

Lowest cost is for Node 1
Beginning node: 1
Reachable nodes: 4, 6

Node 4
NN sequence: 4-6-0
Cost = 200
Total cost = 100 + 200 = 300

Node 6
NN sequence: 6-4-0
Cost = 200
Total cost = 100 + 200 = 300

Node 4 is the one with the lowest cost
Beginning node: 4
Reachable node: 6
Beginning node: 6
Stop

Final sequence: 0-1-4-6-0
Cost = 450

t = 2
Final sequence: 0-5-3-4-2-0
Cost = 510

t = 3
Final sequence: 0-1-6-0
Cost = 350

t = 4
Final sequence: 0-5-3-2-0
Cost = 410

The total cost of the sequences is $1,720, the optimal
solution.

Although NNVO did find the optimal solution in our
small example problem, there is no guarantee that it will
always do so. To gain some insight into how the heuris-
tic will perform in the range of operating characteris-
tics likely to be encountered at Welch’s, we will subject
the heuristic to a much more rigorous testing procedure.

TESTS OF NNVO

Our purpose now is to compare the costs of optimal
sequences with the costs of sequences generated by
NNVO. The procedure used by Gavett [4] will guide
us here, but we will make adjustments appropriate for
the situation at Welch’s.

Five Factors That May Influence NNVO

We have identified five factors that may influence
the cost performance of the NNVO sequencing proce-
dure and specified the performance ranges likely to
be encountered.
1. The maximum number of items per period.

This factor will be controlled at two levels: 8 and 20
items.

2. The mean number of items per period.
This factor also will be set at two levels: 25% and
75% of the maximum allowable.

3. The per-period variability of the number of items.
The number of items produced in each period is
drawn from uniform distributions with the mean
set at the level described in the prior two steps, and
then the standard deviation is considered at two
levels: 2/Ö12 and 4/Ö12.

4. Variability of setup costs.
It is reasonable that the absolute level of the mean
setup costs should not have an impact on the per-
formance of the sequencing method. However, as
Gavett [4] recognized, the variability might have an
effect. We will hold the mean setup cost fixed at a
value of 100 and select costs from a uniform distri-
bution at two levels of standard deviation: 50/Ö12
and 100/Ö12.

5. Symmetry of setup costs.
Gavett [4] also recognized that the degree of sym-
metry in the setup cost matrix may affect the qual-
ity of heuristic solutions. He suggested relaxing
the requirement that the matrix be asymmetric. We
will investigate the degree of symmetry of the
setup cost matrix at two levels: symmetrical and
asymmetrical. For the symmetrical case, a single
transition cost, for off-diagonal terms, will be used



for two matrix elements, Cij and Cji. For the asym-
metrical case, each off-diagonal term will require
a separate random selection, resulting in different
values for Cij and Cji. To maximize the degree of
asymmetry within the constraints of the stated
mean and standard deviations, we developed the
following process:
a. For low setup cost variability, define two uniform

distributions:

LL = [50, 100]; LH = [100, 150].

b. Flip a coin to determine which distribution to use
for Cij (of course, the computer will do the coin
toss). Then select Cji from the other distribution.

c. Complete the same process for high setup cost
variability using the two uniform distributions:

HL = [0, 100]; HH = [100, 200].

We are interested in differences in costs of sequences
created using the NNVO procedure and those obtained
from the optimal sequences. This led us to define our
response (or dependent) variable as:

(Cost (NNVO) – Cost (Optimal))/Cost (Optimal).

We used a 16-run one-half fraction of a 25 factorial de-
signed experiment. Results are given in the next section.

RESULTS

Table 3 describes the levels for each of the five fac-
tors; a negative represents the low setting and a posi-

tive the high setting. The rightmost two columns list
the percentage cost penalties for the sequences found
with the NNVO heuristic and the randomly generated
sequences.

The NNVO heuristic performed very well for 14 of
the 16 test runs, producing optimal solutions in 5 cases.
Run number 6 is particularly bothersome, though, with
a cost penalty of $1,647 above the optimal value of
$4,182. The largest errors appear to be associated with
a high “density” of products per period and asymmet-
ric setup costs. The maximum number of products per
period and the level of variability (for both products
per period and setup costs) appear to have little or no
effect on the quality of NNVO sequences. This is borne
out by regression analysis on the five factors and their
interactions; only the main effects for mean number of
products per period (density) and symmetry were sig-
nificant, each with p-values of 7%.

SUMMARY

Scheduling multi-item capacitated production lines
with sequence dependent setup times and costs is a
difficult problem, and optimal solutions are generally
inaccessible. However, the simple two-step process we
have described—lot-sizing using MODS [1] followed
by sequencing using NNVO [4]—will provide good
cost-based schedules. Nevertheless, we must recognize
the potential for the occasional large cost penalty in
Step 2. Unfortunately, we are not able to predict when
these penalties will occur.

TABLE 3: Experimental Design and Results

Mean # Variability Variability Symmetry Max. # % Error %Error
Products of Products of Setup of Setup of Products NNVO vs Random vs

Run # Per Period Per Period Costs Costs* Per Period Optimal Optimal

1 - - - - + 1.02 27.64
2 + - - - - 6.63 31.28
3 - + - - - 0.00 24.29
4 + + - - + 6.49 71.72
5 - - + - - 0.00 22.58
6 + - + - + 39.36 392.44
7 - + + - + 6.39 129.71
8 + + + - - 14.80 171.40
9 - - - + - 0.34 1.24

10 + - - + + 1.59 22.97
11 - + - + + 0.01 8.05
12 + + - + - 1.05 10.34
13 - - + + + 0.00 14.74
14 + - + + - 1.40 20.07
15 - + + + - 0.00 8.26
16 + + + + + 3.70 58.00

*Low setting (-) represents the asymmetrical case.
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